高频变压器中共模传导EMI代表的是什么

时间:2019-07-23 浏览:
  高频变压器中共模传导EMI代表的是什么
一、高频变压器与EMI
 
高频变压器中传导EMI产生机理以反激式变换器为例,其主电路如图1所示。
 
开关管开通后,变压器一次侧电流逐渐增加,磁芯储能也随之增加。当开关管关断后,二次侧整流二极管导通,变压器储能被耦合到二次侧,给负载供电。
 
在开关电源中,输入整流后的电流为尖脉冲电流,开关开通和关断时变换器中电压、电流变化率很高,这些波形中含有丰富的高频谐波。另外,在主开关管开关过程和整流二极管反向恢复过程中,电路的寄生电感、电容会发生高频振荡,以上这些都是电磁干扰的来源。开关电源中存在大量的分布电容,这些分布电容给电磁干扰的传递提供了通路.LISN为线性阻抗稳定网络,用于线路传导干扰的测量。干扰信号通过导线、寄生电容等传递到变换器的输入、输出端,形成了传导干扰。变压器的各绕组之间也存在着大量的寄生电容 。
 
    反激式开关电源中,变换器工作于连续模式时,开关管VT导通后,B点电位低于A点,一次绕组匝间电容便会充电,充电电流由A流向B;VT关断后,寄生电容反向充电,充电电流由B流向A。这样,变压器中便产生了差模传导EMI。同时,电源元器件与大地之间的电位差也会产生高频变化。由于元器件与大地、机壳之间存在着分布电容,便产生了在输入端与大地、机壳所构成回路之间流动的共模传导EMI电流。
 
具体到变压器中,一次绕组与二次绕组之间的电位差也会产生高频变化,通过寄生电容的耦合,从而产生了在一次侧与二次侧之间流动的共模传导EMI电流。交流等效回路及简化等效回路,ZLISN为线性阻抗稳定网络的等效阻抗;CP为变压器一次绕组与二次绕组间的寄生电容;ZG为大地不同点间的等效阻抗;CSG为输出回路与地间的等效电容;Z为变压器以外回路的等效阻抗。
 
二、变压器中EMI代表的是什么
变压器中EMI代表的是电磁干扰。
变压器与EMI之间有如下的关系: 
1.由于变压器的线圈带有高频电流,因此变压器实际上已成为接收磁场的天线。这些 磁场会冲击附近的走线,并通过这些走线将磁场传导或辐射到密封的范围以外;
2.由于部分线圈有交流电压,因此实际上它们也成为接收电磁场的天线;
3.初级及次级线圈之间的寄生电容可以将噪声传送到绝缘层之外。由于次级线圈的接地通常都与底板连在一起,因此这些噪声又会通过这个接地面传送回来,成为共模噪声。为了减少泄漏电感,将初级及次级线圈紧靠在一起,但这样也会增加线圈的互感,从而增加共模噪声
知识点延伸:
电磁干扰(Electromagnetic Interference,EMI)是干扰电缆信号并降低信号完好性的电子噪音,EMI通常由电磁辐射发生源如马达和机器产生。电磁干扰是人们早就发现的电磁现象,它几乎和电磁效应的现象同时被发现。
 
三、开关电源EMI设计
1.开关电源的EMI源
开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。
(1)功率开关管
功率开关管工作在On-Off快速循环转换的状态,DV/DT和DI/DT都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。
(2)高频变压器
高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。
(3)整流二极管
整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高dv/dt,从而导致强电磁干扰。
(4)PCB
准确的说,PCB是上述干扰源的耦合通道,PCB的优劣,直接对应着对上述EMI源抑制的好坏。
2.开关电源EMI传输通道分类
(1)传导干扰的传输通道
1)容性耦合
2)感性耦合
3)电阻耦合
a.公共电源内阻产生的电阻传导耦合;
b.公共地线阻抗产生的电阻传导耦合;
c.公共线路阻抗产生的电阻传导耦合;
(2)辐射干扰的传输通道
1)在开关电源中,能构成辐射干扰源的元器件和导线均可以被假设为天线,从而利用电偶极子和磁偶极子理论进行分析;二极管、电容、功率开关管可以假设为电偶极子,电感线圈可以假设为磁偶极子;
2)没有屏蔽体时,电偶极子、磁偶极子,产生的电磁波传输通道为空气(可以假设为自由空间);
3)有屏蔽体时,考虑屏蔽体的缝隙和孔洞,按照泄漏场的数学模型进行分析处理。
3.开关电源EMI抑制的9大措施
在开关电源中,电压和电流的突变,即高DV/DT和DI/DT,是其EMI产生的主要原因。实现开关电源的EMC设计技术措施主要基于以下两点:
(1)尽量减小电源本身所产生的干扰源,利用抑制干扰的方法或产生干扰较小的元器件和电路,并进行合理布局;
(2)通过接地、滤波、屏蔽等技术抑制电源的EMI以及提高电源的EMS。
分开来讲,9大措施分别是:
①减小DV/DT和DI/DT(降低其峰值、减缓其斜率);
②压敏电阻的合理应用,以降低浪涌电压;
③阻尼网络抑制过冲
④采用软恢复特性的二极管,以降低高频段EMI
⑤有源功率因数校正,以及其他谐波校正技术
⑥采用合理设计的电源线滤波器
⑦合理的接地处理
⑧有效的屏蔽措施
⑨合理的PCB设计
4.高频变压器漏感的控制
高频变压器的漏感是功率开关管关断尖峰电压产生的重要原因之一,因此,控制漏感成为解决高频变压器带来的EMI首要面对的问题。
减小高频变压器漏感两个切入点:电气设计、工艺设计。
(1)选择合适磁芯,降低漏感。漏感与原边匝数平方成正比,减小匝数会显著降低漏感。
(2)减小绕组间的绝缘层。现在有一种称之为“黄金薄膜”的绝缘层,厚度20~100um,脉冲击穿电压可达几千伏。
(3)增加绕组间耦合度,减小漏感。
5.高频变压器的屏蔽
为防止高频变压器的漏磁对周围电路产生干扰,可采用屏蔽带来屏蔽高频变压器的漏磁场。屏蔽带一般由铜箔制作,绕在变压器外部一周,并进行接地,屏蔽带相对于漏磁场来说是一个短路环,从而抑制漏磁场更大范围的泄漏。
高频变压器,磁心之间和绕组之间会发生相对位移,从而导致高频变压器在工作中产生噪声(啸叫、振动)。为防止该噪声,需要对变压器采取加固措施:
(1)用环氧树脂将磁心(例如EE、EI磁心)的三个接触面进行粘接,抑制相对位移的产生;
(2)用“玻璃珠”(Glass beads)胶合剂粘结磁心,效果更好。
     
          深圳市伟达源科技有限公司是CCC电源适配器     12V6A电源适配器   9V5A电源适配器   电源适配器   24V电源适配器生产商等产品专业生产加工。公司拥有完善的生产设备和检测设备,一流的销售团队以及自主的高水准的研发队伍。产品通过了UL,CE,FCC,KC,PSE,SAA,GS等多种认证。了解更多关于电源适配器厂家详情,请登录好电源-伟达源官网!